Stanford Lunar Analysis Mission: SLAM

Katie Davis
Forrest Hetherington
Josh Alwood
Prof. Bob Twiggs

Nov. 14, 2006
Stanford Amateur Radio Club
What is SLAM?

- Feasibility & preliminary design study
- Can we send CubeSats to the Moon?
Keypoints

- We *can* send CubeSats to the Moon
- Space Systems Development Lab (SSDL) future mission
- Low power CubeSats and high power, high gain carrier
- Hierarchical communication network
Motivation and Goals
Stanford on the Moon

- Stanford alumni organization
- Customer Goals
 - Multidisciplinary mission in next decade
 - Expand Stanford capabilities in space
 - Stanford initiative
 - Garner attention and fundraising for SOM future missions to establish Stanford presence on Moon
Lunar Mission Goals

- Satellite mission to Moon in next five years
- Collect data to further human missions
- Broadcast back to Earth
 - Beat Cal!
- Stanford science & engineering involvement

Images courtesy of Stanford Magazine
Lunar Mission Statement

- To design lunar satellite missions that can be carried out in large part by the Stanford community
- Determine existing Stanford infrastructure and capabilities

Image courtesy of www.stanford.edu
Why Do It?

- Educational opportunity
- Extend university capabilities in space
- Gather data about the moon
- Outreach tool
- PR opportunity for Stanford
- Increase public interest in space
- Competition
- To have FUN!!
Lunar Mission
Lunar Mission

- 6 CubeSats
- Carrier
 - Hybrid Engine
 - \(\Delta v \sim 7.7\text{km/s}\)
- Launch Vehicle
 - \(\Delta v \sim 3.1\text{km/s}\)
- Swing-by Mission
- Cost
 - \(~\$2\text{ million}\)

Courtesy of www.asi.org
CubeSats

- Volume: 10 x 10 x 10 cm³
- Mass ~ 1 kg
- Power ~ 1 W
- CubeSat Kit
- Advantages:
 - Lost cost (KISS)
 - Fast turnaround
 - COTS
- Prevalence: 70 universities worldwide
- Successes: ~10 launches

Images courtesy of © ISSL, University of Tokyo, JAPAN
Mission Organization

Sponsor - Stanford on the Moon

STANFORD Aeronautics & Astronautics

Space Systems Development Laboratory (SSDL)

Subsystems

Payloads and technology

Ground Operations

Launch Vehicle Provider

Hybrid Rocket

Adapted from KatySat.org
Communication

- **Architecture**
 - Earth-Moon distance
 ~ 384,000km
 - Carrier-Earth
 - High power, high gain carrier
 - Attitude control
 - Local to Moon
 - Low power CubeSats and carrier
Communication

- Sat → Carrier → Ground
 - Routine reporting in cyclic order
 - Local IP networking
 - FIFO queuing of messages
 - Message flagging
 - Carrier onboard processing/direction

- Ground station networks
 - Mercury network
 - Purchase time

- Memory issues
 - Orbit vs. quick flyby storage requirements
Summary

- Feasible lunar CubeSat mission
- Preliminary mission design
- Hierarchical communication network

- *Let’s get to work!*
Thank you!

Questions?

For more info
http://ssdl.stanford.edu
http://www.stanford.edu/~kldavis/SLAM